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Abstract. Systems whose phase space is mixed have been conjectured to exhibit quantum
spectral correlations that are, in the semiclassical limit, a combination of Poisson and random-
matrix, with relative weightings determined by the corresponding measures of regular and chaotic
orbits. We here identify an additional component in long-range spectral statistics, associated with
periodic orbit bifurcations, which can be semiclassically large. This is illustrated for a family
of perturbed cat maps.

It has been conjectured that in the semiclassical limit the quantum spectral statistics of
classically integrable systems are generically Poissonian, and that those of classically chaotic
systems are generically given by the average over an appropriate random-matrix ensemble
[1–4]. In between these two extremes lie systems whose phase space is mixed; that is, in
which regular and irregular motion coexist. Such systems are said to exhibitsoft chaos
[5]. For these, it has been suggested that the quantum spectral statistics are a combination
of Poisson and random-matrix, with relative weightings determined by the corresponding
measures of the regular and chaotic orbits [6]. Our purpose here is to identify in this case
an additional component in the long-range statistics that is associated with periodic orbit
bifurcations and which can be semiclassically large.

A semiclassical theory for long-range spectral statistics has been developed [1, 7–9]
based on Gutzwiller’s trace formula [10], which relates the quantum density of states
d(E) =∑n δ(E − En) to classical periodic orbits:

d(E) = d̄(E)+ 1

πh̄β

∑
p

∞∑
n=1

TpAp,n cos

(
nSp

h̄

)
(1)

where d, the mean density, isO(h̄−f ) for a system withf degrees of freedom; the
periodic orbits, labelledp, have actionSp (defined here to include the Maslov index),
period Tp = dSp/dE, and stability amplitudeAp,n = | det(Mn

p − 1)|−1/2, Mp being the
monodromy matrix; for isolated orbitsβ = 1, and for orbits that lie in ad-dimensional
family in phase spaceβ = (d + 1)/2. This theory explains the universality of spectral
correlations on energy scales of the order of, but large compared with, the mean level
separation,d̄−1, in the semiclassical limit for completely integrable systems, in which all
orbits are confined tof -dimensional tori in phase space (i.e.β = (f +1)/2 in (1)), and for
strongly chaotic systems, in which all orbits are isolated and unstable. It also describes the
system-specific deviations from universality, on length scales that are semiclassically large
compared withd̄−1, associated with the short-time dynamics.
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In systems whose phase space is mixed, some periodic orbits are isolated and unstable,
and others lie on tori in stable islands. It is then natural to conjecture that the spectral
statistics will have both Poissonian and random-matrix components, weighted by the relative
measures of regular and chaotic orbits [6, 11]. We shall call this thephase-space volume
rule. There are two arguments that suggest why it might be correct. First, in the
semiclassical limit some states are expected to condense onto stable islands, and others
onto the surrounding chaotic sea, their relative densities being determined by the respective
volumes in phase space [12]. The result then follows if the associated regular and irregular
sub-spectra are assumed statistically independent. Second, the same result is obtained if in
the semiclassical expressions for long-range spectral statistics, obtained using (1), the regular
and chaotic orbits are treated as being uncorrelated, and their respective contributions are
added incoherently. It has, furthermore, been demonstrated that the phase-space volume
rule gives good approximations for various spectral statistics in a wide range of systems
(for a recent review see [13]).

The point we wish to draw attention to here is that there can be an additional contribution
to the long-range spectral correlations in mixed systems coming from the bifurcations
of periodic orbits, and that under certain circumstances this can be semiclassically large.
Bifurcations are critical events where orbits are created or destroyed by coalescence. This
process is a characteristic phenomenon in systems exhibiting soft chaos when a parameter is
changed. The generic bifurcations that occur in two-dimensional conservative systems, or,
equivalently, one-dimensional area-preserving maps, have been classified by Meyer [14].
Altogether, one has to distinguish five qualitatively different cases corresponding to period-
m-tuplings with 16 m 6 5 (cases withm > 5 follow the same pattern as form = 5).
Semiclassically, the importance of these events is that the Gutzwiller amplitudeAp,n in (1)
diverges for the orbits involved. This is because in the derivation of the trace formula the
periodic orbits, which appear as the stationary points in the action of a path integral, are
assumed isolated. Obviously this fails when they coalesce. The remedy is to perform a
uniform asymptotic expansion valid throughout the bifurcation process [15–19]. One result
of this is to replace the divergence by a higher powerβ in (1) close to the bifurcation.
Specifically, different types of bifurcation each have a characteristic amplitude exponent
β > 1 and a characteristic width, which vanishes in the semiclassical limit, over which
their contribution is anomalously large (far from the bifurcation (1) is valid).

In this letter we shall concentrate on single bifurcation events. Our aim is to demonstrate
that these can have a significant influence on spectral statistics. In fact, this is immediately
obvious from the preceding discussion: a bifurcating orbit makes a semiclassically larger
contribution than expected to the density of states and so, for example, completely dominates
the non-universal region in long-range statistics, such as the number variance, the spectral
rigidity, and correlation functions ofd(E). This is particularly striking in the moments of
the staircase functionN(E) = ∫ E0 d(x) dx:

M2k = 〈[N(E)− 〈N(E)〉]2k〉 (2)

where〈· · ·〉 denotes a local average around energyE. Take, for example, the second (k = 1)
moment. For generic integrable systems one expects that semiclassicallyM2 ∼ TH/TI ,
whereTI is a characteristic (system dependent) short classical timescale, andTH = 2πh̄d is
the Heisenberg time, which isO(h̄1−f ). Similarly, for chaotic systems,M2 ∼ ln(TH/TC),
whereTC is the appropriate characteristic short classical timescale in this case. In a mixed
system the phase-space volume rule implies thatM2 should be a given by a sum of such
terms, where in each caseTH is multiplied by the fraction of the volume of the energy
shell that is regular/chaotic respectively. However, it is clear from (1) that the contribution
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from a given bifurcating orbit isO(h̄2(1−β)), and sinceβ > 1 this is semiclassically larger
than the whole chaotic component. Thus the characteristic powers of ¯h associated with
the different kinds of bifurcations form a set of exponents in the moments of the spectral
staircase.

Before discussing further the consequences of these bifurcation contributions, we first
illustrate the behaviour outlined above for the family of perturbed cat maps [20, 21]:(

q ′

p′

)
=
(

2 1
3 2

)(
q

p

)
+ κ

2π
cos(2πq)

(
1

2

)
mod 1. (3)

When the perturbation parameterκ = 0, this reduces to a cat map and is therefore
uniformly hyperbolic. The perturbed maps are then guaranteed by Anosov’s theorem to
be strongly chaotic (i.e. all periodic orbits are isolated and exponentially unstable) for
κ 6 κmax = (

√
3− 1)/

√
5 ≈ 0.33. Outside this range bifurcations occur, producing stable

islands and hence a mixed phase space. Our aim now is to illustrate the influence of one
such bifurcation on the spectral statistics of the associated quantum map.

If q and p are viewed as representing, respectively, a position coordinate and its
conjugate momentum, the mapping (3) is a canonical transformation on a phase space
which has the topology of a two-torus, and may be obtained from the generating function
S(q ′ +m, q)− nq ′, where(m, n) are integer winding numbers and

S(q ′, q) = q ′2− q ′q + q2+ κ

4π2
sin(2πq) (4)

is the action on the full (non-periodized) phase plane [22, 21]. Quantum mechanically, it
follows from the fact that the phase space has unit volume that ¯h = 1/(2πN), whereN is
an integer corresponding to the dimension of the appropriate Hilbert space of wavefunctions
that are periodic in both their position and momentum representations. TheN ×N unitary
matrix with elements

UQ′,Q =
√
N

i
exp(2π iNS(Q′/N,Q/N)) (5)

then acts as a propagator on these wavefunctions which reduces in the usual way to the
classical map (3) in the semiclassical limitN →∞ [23, 22, 20, 21].

We shall be concerned with the statistical distribution of the phasesθn, 16 n 6 N , of
the eigenvalues ofU . For example, ifn(θ) is their counting function (i.e. the number of
eigenvalues with 06 θn < θ ), we will focus on the number variance

V (L;N) = 1

2π

∫ 2π

0

(
n

(
θ + 2πL

N

)
− n(θ)− L

)2

dθ (6)

the moments

M2k(N) = 1

2π

∫ 2π

0

(
n(θ)− Nθ

2π
− α

)2k

dθ (7)

where

α = − 1

π
= ln det(I − U) (8)

and in particular the second (k = 1) moment. We will later make use of the fact that both
V (L;N) andM2(N) can be expressed directly in terms of the traces of powers ofU :

V (L;N) = 2

π2

∞∑
n=1

1

n2
sin2

(
nπL

N

)
|Tr(Un)|2 (9)



L248 Letter to the Editor

and

M2(N) = 1

2π2

∞∑
n=1

|Tr(Un)|2
n2

. (10)

When κ 6 κmax, the classical dynamics is strongly chaotic and thus the statistical
properties of the eigenphases should be the same as those calculated by averaging over the
circular orthogonal ensemble (COE) of random-matrix theory; that is, in the limitN →∞
V (L;N) should tend to the corresponding COE number variance:

V (COE)(L) = 2

π2

[
ln(2πL)+ γ + 1+ 1

2
(Si(πL))2− π

2
Si(πL)− cos(2πL)

−Ci(2πL)+ π2L

(
1− 2

π
Si(2πL)

)]
(11)

whereγ is Euler’s constant. There are, however, two important exceptional cases. First,
the eigenvalue statistics of the unperturbed (κ = 0) cat map are known to be non-generic,
because the quantum dynamics is periodic with a period that depends strongly and erratically
on the prime factors ofN [22, 24]. Second, it is a special feature of the particular map
(3) that simple,κ-independent relations exist between the matrix elements (5) whenN is
divisible by four. These then render random-matrix theory inappropriate as a model for the
eigenvalue statistics. This property is also non-generic and so in the following discussion
we restrict ourselves to the rangeκ > 0 and values ofN that are not divisible by four.

The approach to the limitV (COE)(L) asN →∞ is non-uniform inL. Semiclassically
[8], whenN is large and fixed,V (L;N) is well approximated byV (COE)(L) for L� L∗(N),
whereL∗(N) is a correlation scale of the order ofN that is conjugate to the discrete-time
analogue ofTC , and saturates into non-universal quasiperiodic oscillations with a variance
that isO(1) around a mean value that is approximately(2/π2) lnN whenL � L∗(N).
This mean saturation value is twice the second moment; that isM2(N) ∼ (1/π2) lnN ,
which coincides precisely with the leading-order asymptotics of the corresponding COE
result. Numerical computations in the range 0< κ 6 κmax confirm this behaviour. A
representative sample of data is plotted in figure 1.

When κ increases beyondκmax the dynamics becomes mixed: some orbits are stable
and confined to invariant curves, whilst others remain unstable and ergodic in regions of
the phase space. The phase-space volume rule implies that if the area of the stable islands
is ρ, then in the limit asN →∞,

V (L) = V (Poisson)(ρL)+ V (COE)((1− ρ)L) (12)

where

V (Poisson)(L) = L (13)

is the number variance for a Poisson distributed (i.e. uncorrelated) sequence. (This of
course assumes that one can divide the phase space up into distinct islands and ergodic
regions, but whenN is fixed and large it is expected to provide a good approximation
to V (L;N) for L � L∗(N), becauseρ only has to be measured down to the scale of
resolution, corresponding to an area equal to 1/N , set by the uncertainty principle.) For the
second moment, it follows from the general results discussed in the paragraph following (2)
that the expression analogous to (12) is

M2(N) ∼ aN + 1

π2
ln(bN) (14)
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Figure 1. (a) V (L) versusL for N = 1999, and (b) M2(N) versus logN , for the values ofκ
indicated in the legend. In each case the continuous line represents the COE result.

wherea andb are constants. Numerically, (12) is indeed a good approximation for many
values ofκ andN . A typical set of data is plotted in figure 2.

Whilst the number variance for the perturbed cat maps conforms to the simple picture
outlined above for many values ofκ, there are some for which it shows qualitatively
different behaviour. As an example of this, we take the case whenκ = κ∗ = 5.943 38.
As may be seen from figure 3(b), the phase space is then almost entirely ergodic; that is,
there are no islands on the scale that affects the spectral statistics for the values ofN we
shall be concerned with.V (L;N) should thus be well approximated byV (COE)(L) before
reaching a mean saturation value of(2/π2) lnN . The actual number variance, calculated
numerically forN = 1567, is shown as triangles in figure 3(a). Also shown in this figure
is the difference (squares) betweenV (L;N) andV (COE)(L) (full curve). The point to note
is that rather than saturating, the data actually ‘lifts off’, reaching a much higher value than
expected ((2/π2) ln 1567= 1.490. . .). We will now demonstrate that this is caused by the
bifurcation of a periodic orbit of the classical map (3) atκ = κ∗.

It was shown in [21] that for the map (3) TrU can be expressed in the form

TrU =
√
(N/i)

1∑
j=0

∫ ∞
−∞

exp(2π iNSj (q)) dq (15)
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Figure 2. V (L) versusL, for κ = 6.5 andN = 1999. The full curve represents the volume
rule (12), the chain curve the COE result, and the triangles the numerical data. The inset is a
phase-space plot of typical orbits. The islands have an areaρ ≈ 0.0126.

whereSj (q) = S(q, q) − jq. Whenκ 6 κmax the j -sum has a simple interpretation: the
terms are in one-to-one correspondence with the fixed points of the underlying classical map.
Thus (15) may be viewed as an exact trace formula. A generalization of this result, relating
TrUn to period-n orbits, and holding for a general class of perturbed cat maps, was also
derived in [21]. The usual trace formula may be obtained by evaluating the integral in (15)
using the method of steepest descent. This involves expanding the exponent to quadratic
order around the real saddle pointqj (κ), defined to be the (unique, whenκ 6 κmax) real
solution ofS ′j (q) = 0. The result is that

TrU ≈
1∑

j=0

exp(2π iNSj (qj ))√
S ′′j (qj )

. (16)

Note that whenκ > 0 there are also infinitely many complex solutions of the saddle-point
equation. These correspond to tunnelling orbits and give rise to contributions to the trace
that are exponentially small inN .

As κ increases beyondκmax the complex solutions of the saddle-point equation approach
the real-q axis in complex conjugate pairs, until atκ = κ∗ the first pair coalesce there. For
κ > κ∗ this pair then separate, each moving along the real-q axis. Dynamically, this is a
tangent bifurcation: the birth of two real fixed points, one stable and the other unstable,
from two complex fixed points. We illustrate this by showing in figure 3(c) orbits in a small
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Figure 3. (a) V (L) versusL for κ = κ∗, with the full curve representing the COE prediction,
triangles the numerical data, squares the difference between these, and the chain curve the
contribution from then = 1 term in (9) calculated using (18). A phase-space orbit plot is shown
in (b) for κ = κ∗, and a part of the phase space is plotted in (c) for κ = 5.945, just after the
bifurcation has occured. The island is centred on the newly created stable orbit.

part of the phase space that includes the bifurcation point whenκ = 5.945 (i.e. just after the
bifurcation has occurred); the island of invariant curves surrounds the newly created stable
orbit.

The leading-order asymptotic approximation (16) holds for allκ if the j -sum is extended
to include all saddle points on the real-q axis, except at bifurcation points, where by
definition S ′′j (qj ) = 0 and so the corresponding term diverges. To remedy this divergence,
and to derive a uniformly accurate approximation, one must expand to cubic order around
the bifurcation point. The result of doing this is as follows. If the two solutions of the
saddle-point equation corresponding to the orbits involved in the bifurcation occur atq

(+)
j (κ)

andq(−)j (κ) (which form a complex-conjugate pair whenκ < κ∗, and are real whenκ > κ∗),
and if S(+)j = Sj (q(+)j (κ)) andS(−)j = Sj (q(−)j (κ)), then

TrU ≈
1∑

j=0

exp(2π iNSj (qj ))√
S ′′j (qj )

+
(

4π2

βj

)1/3

N1/6 exp
(

2π iNS̄j − i
π

4

)
Ai(zj ) (17)



L252 Letter to the Editor

0 100000 200000
N

4/3

0

40000

80000

|T
rU

(N
’)|

2

5.8 5.9 6.0 6.1 6.2 6.3 6.4
κ

0.0

6.0

12.0

18.0

|T
rU

|2
Σ

(a)

N

(b)

N
’=

1

Figure 4. (a) |TrU |2 vs κ for N = 1567, the line representing the approximation (17) and the
crosses a direct numerical evaluation of the trace using (5), and (b)

∑N
N ′=1 |TrU(N ′)|2 versus

N4/3 for κ = κ∗, calculated in the same way.

where S̄j = (S
(+)
j + S(−)j )/2, βj = 3

2|
1Sj

ε3
j

|, and zj = −sign(κ − κ∗)(3πN |1Sj |)2/3 =
−(2πβjN)2/3ε2

j , with εj = (q
(+)
j − q(−)j )/2 and1Sj = (S

(+)
j − S(−)j )/2. A numerical

verification of this approximation is shown in figure 4. At the bifurcation point itself, that
is whenκ = κ∗ and henceq(+)j = q(−)j , (17) reduces to

TrU ≈
1∑

j=0

exp(2π iNSj (qj ))√
S ′′j (qj )

+ N1/6

0(2/3)

(
4π

9κ∗

)1/3 exp(2π iNS(+)j − i π4 )

| cos(2πq(+)j )|1/3
(18)

showing how the bifurcating orbits dominate the contributions from the pre-existing real
fixed points asN →∞.

The factorN1/6 in the contribution from the bifurcating orbits is the analogue of ¯h−β in
(1); that is, 1

6 is the characteristic exponent associated with a tangent bifurcation for maps.
It is clear that|TrU |2 ∼ N1/3 asN → ∞, rather than beingO(1), which would be the
case far from the bifurcation. This can be verified by direct numerical calculation of the
trace whenκ = κ∗; specifically, in figure 4(b) we plot

∑N
N ′=1 |TrU(N ′)|2 as a function of

N4/3, which is expected to be a straight line on the basis of (18).
The consequences of the fact that|TrU |2 ∼ N1/3 for V (L;N) andM2(N) are now

clear, given (9) and (10). First, forV (L;N) the contribution from the short-time (small
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n in (9)) dynamics increases asN1/3. This means that both the mean and the variance of
the quasiperiodic oscillations in the saturation region increase in the same way, rather than,
respectively, increasing as lnN and being constant, as is the case far from a bifurcation. It
is thus the explanation of the lift-off in the variance exhibited in figure 3(a), as is verified
in the same figure by the fact that the difference between the COE curve and the data is
well approximated by then = 1 contribution to (9) calculated using the bifurcation formula
(18).

The effect on the second moment is even more striking. It follows from (10) that when
κ is close toκ∗ the bifurcation contributes a term proportional toN1/3 that must be added
to the phase-space volume rule result (14); that is

M2(N) ∼ aN + 1

π2
ln(bN)+ cN1/3 (19)

wherec is a constant. This new term is semiclassically large, and indeed dominates the
contributions from all of the isolated and unstable periodic orbits. The size1κ of the range
of values ofκ in which it must be included may be deduced from (17): the argument of the
Airy function is proportional to|κ − κ∗|N2/3, and so1κ = O(N−2/3). Consequently, the
tangent bifurcation makes a semiclassically small contribution to averages over the second
moment with respect toκ. However, for higher moments this is no longer the case; in the
2kth moment defined by (7) it obviously gives rise to a term that isO(Nk/3), and so for
k > 2 its net contribution to an average over aκ-range that includesκ∗ is semiclassically
large.

The analysis and results described above extend immediately to tangent bifurcations in
general maps and flows: in addition to the phase-space volume rule terms, the contribution
to the 2kth moment of the spectral staircase isO(h̄−k/3) in a parameter range with a size that
isO(h̄2/3); and for the number variance and other long-range statistics there is a ‘lift-off’ to
anomalously large fluctuations in the non-universal regime. They also generalize to other
generic (and non-generic—see, for example [25]) bifurcations, each of which have their
own characteristic ¯h-exponent in the trace formula and ‘width’ in parameter space, and to
the remarkable bifurcation cascades that have been found in typical systems [26] (and which
we have observed in the perturbed cat maps). This hints at a semiclassical picture for the
spectral statistics in mixed systems where there is, in addition to the phase-space volume
rule, a rich structure associated with the competition between the various kinds of periodic
orbit bifurcations, which would be a new example of the ‘singularity dominated strong
fluctuations’ already familiar in optics and elsewhere [27–29]. The possibility remains
that a new universality will emerge when one averages over these contributions (e.g. by
averaging over a system parameter in regimes where bifurcations are dense), and this, we
believe, warrants further investigation.

SDP is grateful to Dr Martin Sieber for a helpful correspondence, and to the CNPq for
financial support. JPK and SDP both wish to thank the Isaac Newton Institute for hospitality
during the period when this work was completed.
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